Multivariable calculus and differential equations
 Homework 8

Surface area, vector fields, line integral

Surface area

1. Find the surface area of
(a) $z=1+2 x+3 y$ where $1 \leq x \leq 4$ and $0 \leq y \leq 1$.
(b) the part of the surface $z=x^{2}+2 y$ that lies above the triangular region in the $x y$-plane with vertices $(0,0),(1,0)$, and $(1,1)$.
(c) the part of the plane $z=6-3 x-2 y$ that lies in the first octant.
(d) the part of the surface $z=x y$ that lies in the cylinder given by $x^{2}+y^{2}=1$.
(e) the part of the surface $z=x^{2}+y^{2}$ that lies under the plane $z=9$.
2. Find a parametric representation for
(a) the cylinder $x^{2}+y^{2}=4,0 \leq z \leq 1$.
(b) the elliptic paraboloid $z=x^{2}+2 y^{2}$.
3. Describe the surfaces given by the following:
(a) $\vec{r}(\theta, t)=(a \cos \theta, a \sin \theta, t)$ where $0 \leq \theta \leq 2 \pi,-1 \leq t \leq 1$, and $a>0$ is fixed.
(b) $\vec{r}(\rho, \theta)=(\rho \cos \theta \sin \alpha, \rho \sin \theta \sin \alpha, \rho \cos \alpha)$ where $0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi$, and $\alpha=\frac{\pi}{4}$ is fixed.
[HW]
(c) $\vec{r}(\theta, \phi)=(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$ where $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$, and $\rho>0$ is fixed.
4. Find the surface area of each of the surfaces described in the previous question.
5. Find the surface area of the unit hemisphere defined by $z=\sqrt{1-x^{2}-y^{2}}$, where (x, y) lies in the circular region $T=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

Vector fields and line integral

6. Sketch the vector field \mathbf{F} given by
(a) $\mathbf{F}(x, y)=\frac{x}{2} \vec{i}+y \vec{j}$
(b) $\mathbf{F}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}} \vec{i}+\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{j}$
(c) $\mathbf{F}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}} \vec{i}-\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{j}$
(d) $\mathbf{F}(x, y, z)=x \vec{i}$
(e) $\mathbf{F}(x, y, z)=2 x \vec{i}-2 y \vec{j}-2 x \vec{k}$
7. Find the gradient vector field of the following functions
(a) $f(x, y)=x^{2}+y^{2}$
(b) $f(x, y)=x^{2} \sin 5 y$

MTH 201 Homework 8 (Continued)
(c) $f(x, y, z)=z e^{-x y}$.
8. Evaluate the line integral $\int_{C} f d s$, where
(a) $f(x, y)=x^{2}-y^{2}$ and C is the part of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(\sqrt{2}, \sqrt{2})$ in the first quadrant.
(b) $f(x, y, z)=\sqrt{x^{2}+y^{2}}$ and C is the curve given by $\vec{r}(t)=4 \cos t \vec{i}+4 \sin t \vec{j}+$ $3 t \vec{k}, 0 \leq t \leq \pi / 2$.
(c) $f(x, y, z)=3 x^{2}-2 y+z$ and C consists of a line segment from $(0,0,0)$ to $(2,2,0)$ followed by a vertical line segment from $(2,2,0)$ to $(2,2,2)$.
9. Compute $\int_{C} x y d x+y z d y+z x d z$, where C is the smooth path given by $\vec{r}(t)=t \vec{i}+$ $t^{2} \vec{j}+t^{3} \vec{k}, 0 \leq t \leq 1$.
10. Compute the line integral $\int_{C} \mathbf{F} \cdot d r$, where
(a) $\mathbf{F}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \vec{j}$ and C is the parabola $y=1+x^{2}$ from $(-1,2)$ to $(1,2)$.
(b) $\mathbf{F}(x, y, z)=(y+z) \vec{i}+(z+x) \vec{j}+(z+x) \vec{k}$ and C consists of a line segment from $(0,0,0)$ to $(1,0,1)$ followed by a line segment from $(1,0,1)$ to $(0,1,2)$.
(c) $\mathbf{F}(x, y, z)=(y \sin z) \vec{i}+(z \sin x) \vec{j}+(x \sin y) \vec{k}$ and C is given by $\vec{r}(t)=\cos t \vec{i}+$ $\sin t \vec{j}+\sin 5 t \vec{k}, 0 \leq t \leq 2 \pi$.
11. Compute the work done by the force field $\mathbf{F}(x, y)=x^{2} \vec{i}-x y \vec{j}$ in moving an object along the quarter circle $\vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}, 0 \leq t \leq \frac{\pi}{2}$.

